Clinical Trial – Therapeutic Issues for Autism
This study aimed to show the effects of hyperbaric oxygen therapy and/or Risperidone in
improving symptoms of autism
This study aimed to show the effects of hyperbaric oxygen therapy and/or Risperidone in
improving symptoms of autism
Cerebral hypoperfusion, or insufficient blood flow in the brain, occurs in many areas of the brain in patients diagnosed with autism spectrum disorder (ASD). Hypoperfusion was demonstrated in the brains of individuals with ASD when compared to normal healthy control brains either using positron emission tomography (PET) or single‑photon emission computed tomography (SPECT). The affected areas include, but are not limited to the: prefrontal, frontal, temporal, occipital, and parietal cortices; thalami; basal ganglia; cingulate cortex; caudate nucleus; the limbic system including the hippocampal area; putamen; substantia nigra; cerebellum; and associative cortices. Moreover, correlations between symptom scores and hypoperfusion in the brains of individuals diagnosed with an ASD were found indicating that the greater the autism symptom pathology, the more significant the cerebral hypoperfusion or vascular pathology in the brain. Evidence suggests that brain inflammation and vascular inflammation may explain a part of the hypoperfusion. There is also evidence of a lack of normal compensatory increase in blood flow when the subjects are challenged with a task. Some studies propose treatments that can address the hypoperfusion found among individuals diagnosed with an ASD, bringing symptom relief to some extent. This review will explore the evidence that indicates cerebral hypoperfusion in ASD, as well as the possible etiological aspects, complications, and treatments.
Autism spectrum disorder (ASD) is neurodevelopment disorder, characterized by impairment in social interaction, verbal and non-verbal communication and the presence of restricted and repetitive stereotyped behaviors. The condition manifests within the first 3 years of life and persists till adulthood. At present, the etiology of ASD is largely unknown, but genetic, environmental, immunological, and neurological factors are thought to play a role in the development of ASD. The prevalence of ASD has increased dramatically in the past few decades. According to current estimates from the United States Centers for Disease Control and Prevention (CDC) as many as 1 in 91 children have ASD in USA.
As autism spectrum disorder (ASD) is a multifactorial condition, with genetic and environmental risk factors contributing to children’s unique presentation and symptom severity, a range of treatments have been suggested. Parents of children with ASD in my clinic are asking me about alternative therapies to improve their children’s condition. One of those therapies is hyperbaric oxygen therapy (HBOT); commercial advertisement in the past has suggested good results with this approach. Should I recommend the use of HBOT for children with ASD? Answer Hyperbaric oxygen therapy provides a higher concentration of oxygen delivered in a chamber or tube containing higher than sea level atmospheric pressure.
Autism spectrum disorders (ASDs) include autistic disorder, Asperger’s disorder and pervasive developmental disorder. The manifestations of ASDs can have an important impact on learning and social functioning that may persist during adulthood. The aim here was to summarize the evidence from Cochrane systematic reviews on interventions for ASDs. Review of systematic reviews, conducted within the Discipline of Evidence-Based Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo. We included and summarized the results from Cochrane systematic reviews on interventions for ASDs. Seventeen reviews were included.