Abstract:
Conventional chemotherapy targets proliferating cancer cells, but most cells in solid tumors are not in a proliferative state. Thus, strategies to enable conventional chemotherapy to target noncycling cells may greatly increase tumor responsiveness. In this study, we used a 3-dimensional tissue culture system to assay diffusible factors that can limit proliferation in the context of the tumor microenvironment, with the goal of identifying targets to heighten proliferative capacity in this setting. We found that supraphysiologic levels of insulin or insulin-like growth factor I (IGF-I) in combination with oxygen supplementation were sufficient to initiate proliferation of quiescence cells in this system. At maximal induction with IGF-I, net tissue proliferation increased 3- to 4-fold in the system such that chemotherapy could trigger a 3- to 6-fold increase in cytotoxicity, compared with control conditions. These effects were confirmed in vivo in colon cancer xenograft models with demonstrations that IGF-I receptor stimulation was sufficient to generate a 45% increase in tumor cell proliferation, along with a 25% to 50% increase in chemotherapy-induced tumor growth delay. Although oxygen was a dominant factor limiting in vitro tumor cell proliferation, we found that oxygen supplementation via pure oxygen breathing at 1 or 2 atmospheres pressure (mimicking hyperbaric therapy) did not decrease hypoxia in the tumor xenograft mouse model and was insufficient to increase tumor proliferation. Thus, our findings pointed to IGF-I receptor stimulation as a rational strategy to successfully increase tumor responsiveness to cytotoxic chemotherapy.
Kyle, Baker, Minchinton, , , , , , (2012). Targeting quiescent tumor cells via oxygen and IGF-I supplementation. Cancer research, 2012 Feb;72(3):801-9. https://www.ncbi.nlm.nih.gov/pubmed/22158947