Abstract:
MicroRNA-22 (miR-22) was previously reported to elicit cardiac myocyte hypertrophy and had an anti-apoptotic effect on neurons. However, its effects on cardiac myocyte apoptosis and cardiac function during ischemia and reperfusion (I/R) are not clear. In the present study, we demonstrate that pre-administration of miR-22 mimic reduced I/R-induced cardiac dysfunction significantly in a rat model. We found that miR-22 overexpression inhibited cardiac myocyte apoptosis, and reduced cardiac remodeling during I/R. Significant cardiac myocyte apoptosis was also observed in a cardiac myocyte model after hypoxia/reoxygenation (H/R), a representative process of I/R. Further experiments showed that eNOS activity and the following NO production were significantly decreased during I/R and H/R, while such decrease was inhibited by overexpression of miR-22. Mechanistically, overexpression of miR-22 had little effect on the total protein level of eNOS, but restored the level of p-eNOS (Ser1177) which was down-regulated during H/R. Further RT-PCR results demonstrated that Caveolin 3 (Cav3), an upstream negative regulator of eNOS, was upregulated during H/R, resulting in a decrease of p-eNOS. However, such upregulation of Cav3 transcript level was inhibited directly by miR-22 during H/R, leading to a restored p-eNOS level and followed NO production in cardiac myocytes. Together, the present study revealed that miR-22 down-regulated Cav3, leading to restored eNOS activity and NO production, which further inhibited cardiac myocyte apoptosis and promoted cardiac function after I/R. Of clinical interest, the present study may highlight miR-22 as a potential therapeutic agent for reducing I/R induced cardiac injury.
Chen, Qi, Gao, , , , , , (2015). Cardiac myocyte-protective effect of microRNA-22 during ischemia and reperfusion through disrupting the caveolin-3/eNOS signaling. International journal of clinical and experimental pathology, 2015 ;8(5):4614-26. https://www.ncbi.nlm.nih.gov/pubmed/26191152