Traumatic Brain Injury (TBI)

Is Hyperbaric Oxygen Therapy Effective for Traumatic Brain Injury? A Rapid Evidence Assessment of the Literature and Recommendations for the Field.

This systematic review examines the efficacy of hyperbaric oxygen (HBO2) for traumatic brain injury (TBI) to make evidence-based recommendations for its application and future research. A comprehensive search was conducted to identify studies through 2014. Methodological quality was assessed and synthesis and interpretation of relevant data was performed. Twelve randomized trials were included. All mild TBI studies demonstrated minimal bias and no statistically significant differences between HBO2 and sham arms. Statistically significant improvement occurred over time within both groups. Moderate-to-severe TBI studies were of mixed quality, with majority of results favoring HBO2 compared with "standard care." The placebo analysis conducted was limited by lack of details. For mild TBI, results indicate HBO2 is no better than sham treatment. Improvements within both HBO2 and sham groups cannot be ignored. For acute treatment of moderate-to-severe TBI, although methodology appears flawed across some studies, because of the complexity of brain injury, HBO2 may be beneficial as a relatively safe adjunctive therapy if feasible. Further research should be considered to resolve the controversy surrounding this field, but only if methodological flaws are avoided and bias minimized.

Treatment of persistent post-concussion syndrome due to mild traumatic brain injury: current status and future directions.

Persistent post-concussion syndrome caused by mild traumatic brain injury has become a major cause of morbidity and poor quality of life. Unlike the acute care of concussion, there is no consensus for treatment of chronic symptoms. Moreover, most of the pharmacologic and non-pharmacologic treatments have failed to demonstrate significant efficacy on both the clinical symptoms as well as the pathophysiologic cascade responsible for the permanent brain injury. This article reviews the pathophysiology of PCS, the diagnostic tools and criteria, the current available treatments including pharmacotherapy and different cognitive rehabilitation programs, and promising new treatment directions. A most promising new direction is the use of hyperbaric oxygen therapy, which targets the basic pathological processes responsible for post-concussion symptoms; it is discussed here in depth.

Simple and Procedural Reaction Time for Mild Traumatic Brain Injury in a Hyperbaric Oxygen Clinical Trial.

Simple reaction time (SRT) and procedural reaction time (PRT) are speed-of-processing tasks in the Automated Neuropsychological Assessment Metrics (ANAM) that may be sensitive to mild traumatic brain injury (mTBI). The investigators measured SRT and PRT throughput (correct responses per minute) at baseline, 6 weeks, and 13 weeks in military personnel with mTBI randomized to local care or 40 chamber sessions (sham-1.2 atmospheres absolute [ATA] air, hyperbaric oxygen-1.5 ATA O2). Scores were assessed at baseline using univariate analysis of variance and across time with repeated measures methods. Data reported as throughput standard scores (mean = 100, SD = 15). Seventy-two participants with ongoing symptoms after mTBI enrolled in the study (three female, median age 31 years, mean three lifetime concussion events, most recent mTBI 23 months prior). Sixty-four had Automated Neuropsychological Assessment Metrics data at 13 weeks. SRT and PRT throughput standard scores were comparable across groups at baseline. Over time, SRT scores did not change in the hyperbaric oxygen or sham groups and decreased in the local care group. PRT throughput standard scores increased from baseline to mid-intervention and decreased from mid-intervention to postintervention in all groups. Repeated measures change over time in SRT (p = 0.23), and PRT (p = 0.17) scores were not different among groups. This study may be underpowered to detect statistically significant change.

Archives

Categories