HBOT Research
Hyperbaric oxygen therapy for Alzheimer’s dementia with positron emission tomography imaging: a case report.

Hyperbaric oxygen therapy for Alzheimer’s dementia with positron emission tomography imaging: a case report.

A 58-year-old female was diagnosed with Alzheimer’s dementia (AD) which was rapidly progressive in the 8 months prior to initiation of hyperbaric oxygen therapy (HBOT). Fluorodeoxyglucose (FDG) positron emission tomography (PET) brain imaging demonstrated global and typical metabolic deficits in AD (posterior temporal-parietal watershed and cingulate areas). An 8-week course of HBOT reversed the patient’s symptomatic decline. Repeat PET imaging demonstrated a corresponding 6.5-38% regional and global increase in brain metabolism, including increased metabolism in the typical AD diagnostic areas of the brain. Continued HBOT in conjunction with standard pharmacotherapy maintained the patient’s symptomatic level of function over an ensuing 22 months. This is the first reported case of simultaneous HBOT-induced symptomatic and FDG PET documented improvement of brain metabolism in AD and suggests an effect on global pathology in AD.

Clinical Trial – Adjunctive Hyperbaric Oxygen Therapy (HBOT) for Lower Extermity Diabetic Ulcer:

Diabetic foot ulcers are associated with high risk of amputation. About 50% of patients
undergoing non-traumatic lower limb amputations are diabetics5. The 5-year amputation rate is
estimated to be 19% with a mean time to amputation 58 months since the onset of an diabetic
foot ulcer6.Because infection and tissue hypoxia are the major contributing factors for
non-healing diabetic foot ulcers, hyperbaric oxygen therapy (HBO) carries a potential benefit
for treating these problematic wounds that do not respond to standard therapy.

The role of oxygen in the wound healing cascade and subsequent combatting action against
bacterial invasion, especially anaerobes, is well documented.14 Delayed or arrested healing
and the development of infection is a direct result from decreased perfusion and poor
oxygenation of tissue.15 The presence of wound hypoxia is an major etiological pathway in the
development of chronic non-healing diabetic foot ulcers

Evaluation of hyperbaric oxygen therapy for spinal cord injury in rats with different treatment course using diffusion tensor imaging.

Animal study. To evaluate the efficacy of hyperbaric oxygen (HBO) therapy for spinal cord injury (SCI) in rats with different treatment course using diffusion tensor imaging (DTI). Hospital in Fuzhou, China. Fifty adult Sprague-Dawley rats were grouped as: (A) sham-operated group (n = 10); (B) SCI without HBO therapy group (n = 10); (C) SCI with HBO therapy for 2 weeks (SCI+HBO) group (n = 10); (D) SCI with HBO therapy for 4 weeks (SCI+HBO) group (n = 10); (E) SCI with HBO therapy for 6 weeks (SCI+HBO) group (n = 10). Basso Beattie Bresnahan (BBB) scores and diffusion tensor imaging parameters including fractional anisotropy (FA), mean diffusivity (MD), radial diffusion (RD), and axial diffusion (AD) values in the injury epicenter, as well as 2 mm rostral and caudal to the injury epicenter were collected and analyzed 6 weeks post-injury.

Further application of hyperbaric oxygen in prostate cancer.

Hyperbaric oxygen therapy (HBOT) has been used as an adjuvant treatment for multiple pathological states, which involves hypoxic conditions. Over the past 50 years, HBOT has been recommended and used in a wide variety of medical conditions, clinically in the treatment of ischemic or nonhealing wounds and radiation-injured tissue, and in the treatment of malignancy. The mechanism of this treatment is providing oxygen under pressure which is higher than the atmosphere thus increasing tissue oxygen concentration. When cells get enough oxygen in the microenvironment, they become active and replicate effectively. Prostate cancer is the second most common cancer and the fifth leading cause of cancer death among male around the world.

Archives

Categories